Instanton approximation, periodic ASD connections, and mean dimension
نویسندگان
چکیده
منابع مشابه
Point-to-periodic and Periodic-to-periodic Connections
In this work we consider computing and continuing connecting orbits in parameter dependent dynamical systems. We give details of algorithms for computing connections between equilibria and periodic orbits, and between periodic orbits. The theoretical foundation for these techniques is given by the seminal work of Beyn [5] where a numerical technique is also proposed. Our algorithms consist of s...
متن کاملfragmentability and approximation
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
15 صفحه اولSofic Mean Dimension
We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-LindenstraussWeiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.
متن کاملHausdorff dimension and Diophantine approximation
In the present survey paper, we explain how the theory of Hausdorff dimension and Hausdorff measure is used to answer certain questions in Diophantine approximation. The final section is devoted to a discussion around the Diophantine properties of the points lying in the middle third Cantor set.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2011
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2010.11.008