Instanton approximation, periodic ASD connections, and mean dimension

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point-to-periodic and Periodic-to-periodic Connections

In this work we consider computing and continuing connecting orbits in parameter dependent dynamical systems. We give details of algorithms for computing connections between equilibria and periodic orbits, and between periodic orbits. The theoretical foundation for these techniques is given by the seminal work of Beyn [5] where a numerical technique is also proposed. Our algorithms consist of s...

متن کامل

fragmentability and approximation

in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...

15 صفحه اول

Sofic Mean Dimension

We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-LindenstraussWeiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.

متن کامل

Hausdorff dimension and Diophantine approximation

In the present survey paper, we explain how the theory of Hausdorff dimension and Hausdorff measure is used to answer certain questions in Diophantine approximation. The final section is devoted to a discussion around the Diophantine properties of the points lying in the middle third Cantor set.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2011

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2010.11.008